

Australian Monitor

HP-1 & LP-1 **FILTER CARDS**

The HP-1 and LP-1 filter cards were designed for retrofitting in K-Series amplifiers and are also compatible with the new Opal Series.

They offer a wide range of filter frequencies set to ISO third octave centres, and are suitable for most filtering applications, including equalisation, pop & rumble filtering, hiss and sibilance filtering and are especially suitable for active crossovers.

The filters offer symmetrical oddorder Butterworth and even-order Linkwitz-Riley characteristics. Together, these form a family known as all-pass networks, as they sum to an all-pass characteristic, which has a flat amplitude response and a smooth phase response. All-pass crossover networks also have the property of having a constant phase diffence between outputs.

This constant phase difference means that the directional pattern from two non-coincident drivers is stable and consistent throughout the crossover region. In the case of the even-order networks, it is also symmetrical about the driver axis for time-aligned drivers.

To make the most of this excellent directional behaviour, a delay compensation network has been incorporated to compensate for time offsets between drivers.

The filter modules feature extensive electromagnetic and electrostatic shielding and are highly immune to radio frequency interference.

A unique level control is provided which simultaneously allows the user to adjust both signal level and polarity.

As with all Australian Monitor electronics, performance and reliability are guaranteed.

> Only the highest quality components are used - Roederstein resistors. WIMA and Roederstein capacitors, fully enclosed cermet trimpots and high slewrate, low-noise, low distortion op-Each amps. module is individually tested to meet a rigorous specification. And, like our amplifiers, they are built to work in any environment, and built to last.

The filter modules also include low-cut and high-cut filters which can be used for

- extra crossover points in multi-way systems
- low frequency equalisation
- reducing low frequency rumble
- reducing cone excursion at low frequencies
- reducing high frequency hiss
- reducing radio frequency interference.

LP-1 module standard options

HP-1 module standard options

High-Cut Filter

Low-Cut Filter

Freque	ncies:	10 Hz 12,5 Hz 16 Hz	20 Hz 25 Hz 31,5 Hz	40 Hz 50 Hz 63 Hz	80 Hz 100 Hz	Freque	ncies:	5 kHz 6,3 kHz 8 kHz	10 kHz 12,5 kHz 16 kHz	20 kHz 25 kHz 31,5 kHz	40 kHz 50 kHz
1st order (6 dB/octave) 2nd order (12 dB/octave) 3rd order (18 dB/octave)						1st order (6 dB/octave) 2nd order (12 dB/octave) 3rd order (18 dB/octave)					
Filter Types:Butterworth(flattest pass-band response) orBessel(flattest delay, least overshoot)						Filter Types:Butterworth(flattest pass-band response) orBessel(flattest delay, least overshoot)					
Low Pass Filter						High Pass Filter					
Frequencies, Hz:						Frequencies. Hz:					
40	50	63	80	100	125	40	50	63	80	100	125
160	200	250	315	400	500	160	200	250	315	400	500
630	800	1,0k	1,25k	1,6k	2,0k	630	800	1,0k	1,25k	1,6k	2,0k
2,5k 10k	3,15k 12,5k	4,0k	5,0k	6,3k	8,0k	2,5k 10k	3,15k 12,5 k	4,0k	5,0k	6,3k	8,0k
1st orde 2nd orde 3rd orde 4th orde	er (6 er (12 er (18 er (24	6 dB/octa 2 dB/octa 3 dB/octa 4 dB/octa	ve) Bu ve) Lir ve) Bu ve) Lir	itterworth hkwitz-Ril htterworth hkwitz-Ril	ey ey	1st orde 2nd ord 3rd orde 4th orde	er (6 er (12 er (18 er (24	6 dB/octav 2 dB/octav 3 dB/octav 4 dB/octav	ve) Bu ve) Lin ve) Bu ve) Lin	utterworth hkwitz-Rik utterworth hkwitz-Rik	ey ey
Other frequencies available on request					Other frequencies available on request						

ies available on request.

PERFORMANCE SPECIFICATION (typical, using 1.6 kHz crossover in amplifier circuit)

Signal / Noise Ratio: > 95 dB re rated power T.H.D.: < 0.005% @ 1 dB below rated power

ctave) ctave) ctave) ittest pass-band response) or

40 50		63	80	100	125
160	200	250	315	400	500
630	800	1,0k	1,25k	1,6k	2,0k
2,5k	3,15k	4,0k	5,0k	6,3k	8,0k
10k	12,5 k				
1st orde 2nd ord 3rd orde 4th orde	er (6 ler (12 er (18 er (24	dB/octav dB/octav dB/octav dB/octav	ve) Bu ve) Lir ve) Bu ve) Lir	itterworth hkwitz-Ril htterworth hkwitz-Ril	ey ey

Other frequencies available on request.

